Search Results for: linked list

C# || Remove Linked List Elements – How To Remove All Target Linked List Elements Using C#

The following is a module with functions which demonstrates how to remove all target linked list elements using C#.


1. Remove Elements – Problem Statement

Given the head of a linked list and an integer val, remove all the nodes of the linked list that has Node.val == val, and return the new head.

Example 1:

Example 1


Input: head = [1,2,6,3,4,5,6], val = 6
Output: [1,2,3,4,5]

Example 2:


Input: head = [], val = 1
Output: []

Example 3:


Input: head = [7,7,7,7], val = 7
Output: []


2. Remove Elements – Solution

The following is a solution which demonstrates how to remove all target linked list elements.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[1,2,3,4,5]
[]
[]

C# || How To Flatten A Multilevel Doubly Linked List Using C#

The following is a module with functions which demonstrates how to flatten a doubly linked list using C#.


1. Flatten – Problem Statement

You are given a doubly linked list which in addition to the next and previous pointers, it could have a child pointer, which may or may not point to a separate doubly linked list. These child lists may have one or more children of their own, and so on, to produce a multilevel data structure, as shown in the example below.

Flatten the list so that all the nodes appear in a single-level, doubly linked list. You are given the head of the first level of the list.

Example 1:


Input: head = [1,2,3,4,5,6,null,null,null,7,8,9,10,null,null,11,12]
Output: [1,2,3,7,8,11,12,9,10,4,5,6]
Explanation:

The multilevel linked list in the input is as follows:

Example 1

After flattening the multilevel linked list it becomes:

Example 1

Example 2:


Input: head = [1,2,null,3]
Output: [1,3,2]
Explanation:

The input multilevel linked list is as follows:

1---2---NULL
|
3---NULL

Example 3:


Input: head = []
Output: []


2. Flatten – Solution

The following are two solutions which demonstrates how to flatten a doubly linked list.

Iterative

Recursive

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[1,2,3,7,8,11,12,9,10,4,5,6]
[1,3,2]
[]

C++ || Snippet – Simple Linked List Using Delete, Insert, & Display Functions

The following is sample code for a simple linked list, which implements the following functions: “Delete, Insert, and Display.”

The sample code provided on this page is a stripped down version of a more robust linked list class which was previously discussed on this site. Sample code for that can be found here.

It is recommended you check that out as the functions implemented within that class are very useful.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output

My Programming Notes

My Programming Notes
Is An Awesome Site!
August

[DELETE THE TEXT "AUGUST"]

My Programming Notes
Is An Awesome Site!

Destroying nodes...
My Programming Notes
Is An Awesome Site!

C++ || Snippet – Custom Template Linked List Sample Code

This page will consist of sample code for a singly linked list, which is loosely based on the built in C++ “List” library. Provided in the linked list class are the following functions:

From the following, the functions of interest to look out for are the “Delete, Display, Replace, InsertBefore, InsertAfter, and InsertInOrder” functions as they are typically used as programming assignments in many C++ Data structures courses to further demonstrate how linked lists operate.

===== DEMONSTRATION HOW TO USE =====

Use of the above template class is the same as its STL counterpart. Here is a sample program demonstrating its use.

Once compiled, you should get this as your output

** These are names of fruits sorted in order using the 'InsertInOrder()' function:

Apple
Orange
Plum
Tomato

There is currently 4 items in the list

** Here is the same list with the word 'Plum' deleted
using the 'Delete()' function:

Apple
Orange
Tomato

There is currently 3 items in the list

** Now the word 'Bike' will be added to the list,
right after the word 'Apple' using the 'InsertAfter()' function:

Apple
Bike
Orange
Tomato

There is currently 4 items in the list

** Now the name 'Jessica' will be added to the list,
right before the word 'Orange' using the 'InsertBefore()' function:

Apple
Bike
Jessica
Orange
Tomato

There is currently 5 items in the list

** The word 'Orange' will now be replaced with the name,
'Kat' using the 'Replace()' function:

Apple
Bike
Jessica
Kat
Tomato

There is currently 5 items in the list

C++ || Snippet – Singly Linked List Custom Template Queue Sample Code

This page will consist of sample code for a custom singly linked list template queue. This implementation differs from the previously highlighted doubly linked list in that this version uses a single node to store its data rather than using two separate nodes (front and rear).

Looking for sample code for a stack? Click here.

REQUIRED KNOWLEDGE FOR THIS SNIPPET

Structs
Classes
Template Classes - What Are They?''
Queue - What is it?
FIFO - First In First Out
#include < queue>
Linked Lists - How To Use

This template class is a custom duplication of the Standard Template Library (STL) queue class. Whether you like building your own data structures, you simply do not like to use any inbuilt functions, opting to build everything yourself, or your homework requires you make your own data structure, this sample code is really useful. I feel its beneficial building functions such as this, that way you better understand the behind the scene processes.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

===== DEMONSTRATION HOW TO USE =====

Use of the above template class is the same as its STL counterpart. Here is a sample program demonstrating its use.

Once compiled, you should get this as your output

charQueue has 35 items in it and contains the text:
My Programming Notes Is A Big Help!

intQueue has 12 items in it.
The sum of the numbers in the queue is: -2817

doubleQueue has 11 items in it.
The sum of the numbers in the queue is: 210.777
Press any key to continue . . .

C++ || Snippet – Doubly Linked List Custom Template Queue Sample Code

This page will consist of sample code for a custom doubly linked list template queue. This implementation is considered a doubly linked list because it uses two nodes to store data in the queue – a ‘front’ and a ‘rear’ node. This is not a circular linked list, nor does it link forwards and/or backwards.

Looking for sample code for a stack? Click here.

REQUIRED KNOWLEDGE FOR THIS SNIPPET

Structs
Classes
Template Classes - What Are They?
Queue - What is it?
FIFO - First In First Out
#include < queue>
Linked Lists - How To Use

This template class is a custom duplication of the Standard Template Library (STL) queue class. Whether you like building your own data structures, you simply do not like to use any inbuilt functions, opting to build everything yourself, or your homework requires you make your own data structure, this sample code is really useful. I feel its beneficial building functions such as this, that way you better understand the behind the scene processes.


QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

===== DEMONSTRATION HOW TO USE =====

Use of the above template class is the same as its STL counterpart. Here is a sample program demonstrating its use.


Once compiled, you should get this as your output

charQueue has 39 items in it and contains the text:
My Programming Notes Helped Me Succeed!

intQueue has 9 items in it.
The sum of the numbers in the queue is: -2145

floatQueue has 10 items in it.
The sum of the numbers in the queue is: -286.717

C++ || Snippet – Linked List Custom Template Stack Sample Code

This page will consist of sample code for a custom linked list template stack. This page differs from the previously highlighted array based template stack in that this version uses a singly linked list to store data rather than using an array.

Looking for sample code for a queue? Click here.

REQUIRED KNOWLEDGE FOR THIS SNIPPET

Structs
Classes
Template Classes - What Are They?
Stacks
LIFO - What Is It?
#include < stack>
Linked Lists - How To Use

This template class is a custom duplication of the Standard Template Library (STL) stack class. Whether you like building your own data structures, you simply do not like to use any inbuilt functions, opting to build everything yourself, or your homework requires you make your own data structure, this sample code is really useful. I feel its beneficial building functions such as this, that way you better understand the behind the scene processes.


QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

===== DEMONSTRATION HOW TO USE =====

Use of the above template class is the same as its STL counterpart. Here is a sample program demonstrating its use.

Once compiled, you should get this as your output

charStack has 31 items in it
and contains the text "My Programming Notes Is Awesome" backwards:
emosewA sI setoN gnimmargorP yM

intStack has 9 items in it.
The sum of the numbers in the stack is: 2145

floatStack has 10 items in it.
The sum of the numbers in the stack is: 286.717

C++ || Multi Process Server & Client Hash Table Using Thread Pools, Message Queues, & Signal Handlers

The following is another homework assignment which was presented in an Operating Systems Concepts class. Using commandline arguments, the following is a program which implements a multi threaded hash table, utilizing message queues to pass text from a client program to a server program and vice versa. This program makes use of multiple interprocess communication function calls provided on Unix based systems.

REQUIRED KNOWLEDGE FOR THIS PROGRAM

How To Override The Default Signal Handler (CTRL-C)
How To Create And Use Pthreads For Interprocess Communication
How To Use Message Queues For Interprocess Communication
Multi Process Synchronization Producer Consumer Problem Using Pthreads
Sample Input Server Records File - Download Here

==== 1. OVERVIEW ====

Hash tables are widely used for efficient storage and retrieval of data. When using hash tables in multi threaded applications, you must ensure that concurrent accesses into the hash table is free from race conditions, dead locks, and other problems that arise in program synchronization.

One solution to overcome this problem is to prevent concurrent accesses into the hash table altogether; i.e. prior to accessing the hash table, a thread acquires a lock, and then releases the lock after the access is complete. Such approach, although simple, is inefficient. The program demonstrated on this page implements an alternative solution, one which permits safe concurrent accesses into the hash table. In the approach implemented on this page, each hash location within a hash table is protected with a separate lock. Hence, multiple threads access the hash table concurrently as long as they are accessing different hash locations. For greater efficiency, this program also makes use of a thread pool.

==== 2. TECHNICAL DETAILS ====

This program was implemented in two parts; a server program and a client program. The server side of the program maintains a hash table of records and a pool of threads. The client program requests from the server program search records by sending record ids over a message queue. The server program then retrieves a request from the message queue, and wakes up a thread in the thread pool. That awakened thread then uses the id (sent from the client program) to retrieve the corresponding record from the hash table, and sends the found record from the server program to the client program over the message queue.

The server also reads a specified file from the commandline, which stores initial user data that is to be inserted and stored into the hash table. The incoming text file has the following format:

a unique numerical id 1 (an integer)
the first name 1 (a string)
the last name 1 (a string)
.
.
.
a unique numerical id N (an integer)
the first name N (a string)
the last name N (a string)

These three fields make up one single record for one individual. More than one record may be present in the incoming text file.

==== 3. SERVER ====

The server has the following structure and function:

Multi Threaded Process Server Flow Control SelectShow



The server program is invoked with the following commandline structure:

./Server [FILE NAME] [NUMBER OF THREADS] (e.g. ./Server database.dat 10)

The server is implemented below.

The client program has a much easier flow of control. It is implemented below.

==== 4. CLIENT ====

The client has the following structure and function:

Multi Threaded Process Client Flow Control SelectShow


The client program was designed to sleep for 1 second every time a new record is obtained from the server. This makes it so its easier for the user to see what is being displayed on the screen.

The client program is invoked with the following commandline structure:

./client

The client is implemented below.


QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

See sample files named server.cpp and client.cpp which illustrate interprocess communications using message queues. See file condvar.cpp which illustrates the use of condition variables. Finally, see file signal.cpp which illustrates the overriding of default signal handlers.

The following is sample output:
(Note: remember to include the initial records input file!)

SERVER OUTPUT:

./Server INPUT_Records_programmingnotes_freeweq_com.txt 26

** SERVER ID #1015808 SUCCESSFULLY ESTABLISHED

^C

Caught the CTRL-C
Shutting down the server connection..

CLIENT OUTPUT:

./Client

** CONNECTION TO SERVER ID #1015808 SUCCESS

ID = 243 Record = Graham Basil
ID = 7943 Record = Tobias Arie
ID = 3607 Record = Claire Amina
ID = 849 Record = Jetta Victoria
ID = 126 Record = Jeramy Tod
ID = 7483 Record = Vivan Krystal
ID = 8036 Record = Lilliam Harley
ID = 1901 Record = Kati Basil
ID = 3524 Record = Kenneth Perkins
ID = 5256 Record = Jodee Albertina
ID = 7065 Record = Marylou Donn
ID = 3951 Record = Ula Domitila
ID = 395 Record = Jaime Lilliam
ID = 9234 Record = Nigel Gene
ID = 4148 Record = Carmella Evelia
ID = 9340 Record = Sang Cherilyn
ID = 3834 Record = Jessica Freddy

** SERVER CONNECTION CLOSED..

C++ || Custom Template Hash Map With Iterator Using Separate Chaining

Before we get into the code, what is a Hash Map? Simply put, a Hash Map is an extension of a Hash Table; which is a data structure used to map unique “keys” to specific “values.” The Hash Map demonstrated on this page is different from the previous Hash Table implementation in that key/value pairs do not need to be the same datatype, they can be completely different. So for example, if you wish to map a string “key” to an integer “value“, utilizing a Hash Map is ideal.

In its most simplest form, a Hash Map can be thought of as an associative array, or a “dictionary.” Hash Map’s are composed of a collection of key/value pairs, such that each possible key appears atleast once in the collection for a given value. While a standard array requires that indice subscripts be integers, a hash map can use a string, an integer, or even a floating point value as the index. That index is called the “key,” and the contents within the array at that specific index location is called the “value.” A hash map uses a hash function to generate an index into the table, creating buckets or slots, from which the correct value can be found.

To illustrate, suppose that you’re working with some data that has values associated with strings — for instance, you might have student names and you wish to assign them grades. How would you store this data? Depending on your skill level, you might use multiple arrays during the implementation. For example, in terms of a one dimensional array, if we wanted to access the data for a student located at index #25, we could access it by doing:


studentNames[25]; // do something with the data
studentGrades[25];

Here, we dont have to search through each element in the array to find what we need, we just access it at index #25. The question is, how do we know that index #25 holds the data that we are looking for? If we have a large set of data, not only will keeping track of multiple arrays become tiresome, but doing a sequential search over each item within the separate arrays can become very inefficient. That is where hashing comes in handy. Using a Hash Map, we can use the students name as the “key,” and the students grade as the data “value.” Given this “key” (the students name), we can apply a hash function to map a unique index or bucket within the hash table to find the data “value” (the students grade) that we wish to access.

So in essence, a Hash Map is an extension of a hash table, which is a data structure that stores key/value pairs. Hash tables are typically used because they are ideal for doing a quick search of items.

Though hashing is ideal, it isnt perfect. It is possible for multiple “keys” to be hashed into the same location. Hash “collisions” are practically unavoidable when hashing large data sets. The code demonstrated on this page handles collisions via separate chaining, utilizing an array of linked list head nodes to store multiple keys within one bucket – should any collisions occur.

A special feature of this current hash map class is that its implemented as a multimap, meaning that more than one “value” can be associated with a given “key.” For example, in a student enrollment system where students may be enrolled in multiple classes simultaneously, there might be an association for each enrollment where the “key” is the student ID, and the “value” is the course ID. In this example, if a given student is enrolled in three courses, there will be three associated “values” (course ID’s) for one “key” (student ID) in the Hash Map.

An iterator was also implemented, making data access that much more simple within the hash map class. Click here for an overview demonstrating how custom iterators can be built.

=== CUSTOM TEMPLATE HASH MAP WITH ITERATOR ===