Daily Archives: November 28, 2021

C# || How To Find The Largest Component Size By Common Factor Using C#

The following is a module with functions which demonstrates how to find the largest component size by common factor using C#.


1. Largest Component Size – Problem Statement

You are given an integer array of unique positive integers nums. Consider the following graph:

  • There are nums.length nodes, labeled nums[0] to nums[nums.length – 1],
  • There is an undirected edge between nums[i] and nums[j] if nums[i] and nums[j] share a common factor greater than 1.

Return the size of the largest connected component in the graph.

Example 1:

Example 1


Input: nums = [4,6,15,35]
Output: 4

Example 2:

Example 2


Input: nums = [20,50,9,63]
Output: 2

Example 3:

Example 3


Input: nums = [2,3,6,7,4,12,21,39]
Output: 8


2. Largest Component Size – Solution

The following is a solution which demonstrates how to find the largest component size by common factor.

The following solution uses a union find set to group connections together.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


4
2
8

C# || Accounts Merge – How To Merge A List Of Emails Using C#

The following is a module with functions which demonstrates how to merge a list of emails using C#.


1. Accounts Merge – Problem Statement

Given a list of accounts where each element accounts[i] is a list of strings, where the first element accounts[i][0] is a name, and the rest of the elements are emails representing emails of the account.

Now, we would like to merge these accounts. Two accounts definitely belong to the same person if there is some common email to both accounts. Note that even if two accounts have the same name, they may belong to different people as people could have the same name. A person can have any number of accounts initially, but all of their accounts definitely have the same name.

After merging the accounts, return the accounts in the following format: the first element of each account is the name, and the rest of the elements are emails in sorted order. The accounts themselves can be returned in any order.

Example 1:


Input: accounts = [["John","[email protected]","[email protected]"],["John","[email protected]","[email protected]"],["Mary","[email protected]"],["John","[email protected]"]]
Output: [["John","[email protected]","[email protected]","[email protected]"],["Mary","[email protected]"],["John","[email protected]"]]
Explanation:
The first and second John's are the same person as they have the common email "[email protected]".
The third John and Mary are different people as none of their email addresses are used by other accounts.
We could return these lists in any order, for example the answer [['Mary', '[email protected]'], ['John', '[email protected]'],
['John', '[email protected]', '[email protected]', '[email protected]']] would still be accepted.

Example 2:


Input: accounts = [["Gabe","[email protected]","[email protected]","[email protected]"],["Kevin","[email protected]","[email protected]","[email protected]"],["Ethan","[email protected]","[email protected]","[email protected]"],["Hanzo","[email protected]","[email protected]","[email protected]"],["Fern","[email protected]","[email protected]","[email protected]"]]
Output: [["Ethan","[email protected]","[email protected]","[email protected]"],["Gabe","[email protected]","[email protected]","[email protected]"],["Hanzo","[email protected]","[email protected]","[email protected]"],["Kevin","[email protected]","[email protected]","[email protected]"],["Fern","[email protected]","[email protected]","[email protected]"]]


2. Accounts Merge – Solution

The following is a solution which demonstrates how to merge a list of emails.

The following solution uses a union find set to group accounts with matching emails together.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[["John","[email protected]","[email protected]","[email protected]"],["Mary","[email protected]"],["John","[email protected]"]]
[["Gabe","[email protected]","[email protected]","[email protected]"],["Kevin","[email protected]","[email protected]","[email protected]"],["Ethan","[email protected]","[email protected]","[email protected]"],["Hanzo","[email protected]","[email protected]","[email protected]"],["Fern","[email protected]","[email protected]","[email protected]"]]

C# || How To Find All Paths From Source To Target In Graph Using C#

The following is a module with functions which demonstrates how to find all paths from source to target in a graph using C#.


1. All Paths Source Target – Problem Statement

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n – 1, find all possible paths from node 0 to node n – 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Example 1:

Example 1


Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Example 2:

Example 2


Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

Example 3:


Input: graph = [[1],[]]
Output: [[0,1]]

Example 4:


Input: graph = [[1,2,3],[2],[3],[]]
Output: [[0,1,2,3],[0,2,3],[0,3]]

Example 5:


Input: graph = [[1,3],[2],[3],[]]
Output: [[0,1,2,3],[0,3]]


2. All Paths Source Target – Solution

The following is a solution which demonstrates how to find all paths from source to target in a graph.

This solution uses Breadth First Search and backtracking when looking for paths.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[[0,1,3],[0,2,3]]
[[0,4],[0,3,4],[0,1,4],[0,1,3,4],[0,1,2,3,4]]
[[0,1]]
[[0,3],[0,2,3],[0,1,2,3]]
[[0,3],[0,1,2,3]]